
A Non-Probabi l i s t i c Switching L e m m a
for the Sipser Funct ion

Sorin Istrail* Dejan Zivkovict

Department of Mathematics, Wesleyan University
Middletown, CT 06459, USA

Abs t r ac t . Valiant [12] showed that the clique function is structurally dif-
ferent than the majority function by establishing the following "switching
lemma ~ : Any function f whose set of prime implicants is a large enough
subset of the set of cliques (and thus requiring big ~2-circuits), has a
large set of prime clauses (i.e., big II2-circuits). As a corollary, an expo-
nential lower bound was obtained for monotone ~II~-circuits computing
the clique function. The proof technique is the only non-probabilistic su-
per polynomial lower bound method from the literature. We prove, by
a non-probabflistic argument as well, a similar switching lemma for the
NCl-complete Sipser function. Using this we then show that a monotone
depth-3 (i.e., ~II~ or II~II) circuit computing the Sipser function must
have super quasipolynomial size. Moreover, any depth-d quasipolynomial
size non-monotone circuit computing the Sipser function has a depth-
(d - 1) gate computing a function with exponentially many both prime
implicants and (monotone) prime clauses. These results are obtained by
a top-down analysis of the circuits.

1 I n t r o d u c t i o n

Proving lower bounds on the size or depth of Boolean circuits is a fundamental
problem in complexity theory. It is quite remarkable that almost all methods
used in deriving super polynomial lower bounds employ-- in crucial parts of
the argument--probabil is t ic reasoning. To appreciate the difficulty of obtaining
non-probabilistic lower bound proofs, let us mention that there is only one such
method in the li terature due to Valiant [12]. It is used to show that any monotone
~II~-circuit computing the clique function requires exponential size.

Let us call clique-like a function whose prime implicants form a large enough
subset of the set of cliques. Certainly such a function requires a big ~2-circuit.

*Supported in part by NSF grant CCR-8810074. The author's current address: Sandia
National Laboratories, Dept. 1423, Algorithms and Discrete Math., Albuquerque, NM 87185-
5800, USA. Email: scistra@cs.sandia.gov.

tThe author's current address: Dept. of Math. and Comp. Science, Sava~mah State
College, SavannaJa~ GA 31404, USA. Email: dzivkov~uscrLbitnet~uga.cc.uga.edu.

567

The Valiant's result shows that any II2-circuit for the function is also big. This
evidence was presented as a structural difference between the clique function
and the majority function. Indeed, majority-like functions may have small II2-
circuits.

In this paper we present results similar to those of Valiant's. They are
stronger in the sense that they apply to a much easier function. Instead of the
NP-complete clique function we show analogous results for the NCl-complete
Sipser function Slogn, i.e., the alternating OR-AND complete binary tree of
depth log n. This means that the above type of structural difference, now be-
tween Slogn and majority, is present in NC 1 and therefore is not necessarily
related to the fact that the clique function belongs to a higher complexity class.

Let us call Sipser-like a function whose set of prime implicants is a subset of

at least 2 ~176176176 prime implicants of Slogs. We establish

1. A structural characterization of the self-reducibility of Slog~ ;

2. Switching Lemma: Any Sipser-like function has an exponential size set of
prime clauses.

3. Any Sipser-like function requires super quasipolynomial size monotone
depth-3 circuits;

. Every non-monotone depth-d circuit computing a Sipser-like function has
a depth-(d- 1) gate computing a function whose both the number of prime
implicants and the number of (monotone) prime clauses is exponential.

Our results are obtained through an extensive combinatorial analysis of the
self-reducibility of the Sipser function. This is of an independent interest and,
together with the NCl-completeness, may speak in favor of the use of Slogn as
a target function in other lower bound proofs (e.g., attacking the separation of
TC ~ and ACC from NC1).

The paper is organized as follows. After recalling basic definitions and nota-
tion we study the Sipser function in more detail. Section 4 contains our switching
lemma, and section 5 its application to lower bounds on the size of circuits.

2 Bas i c def in i t ions and n o t a t i o n

This section contains definitions and notation adopted throughout the paper.
We first recall some of the basic notions of the theory of Boolean functions (for
more details see, for example, [13]). A literal is a variable or a negated variable.
A conjunction of literals, p, is an implicant of a Boolean function f if p < f
pointwise. If in addition, no conjunction of any proper subset of the literals
comprising p is an implicant, then p is a prime implicant of f . By the same
token, a disjunction of literals, s, such that f < s is a clause of f . It is a
prime clause if, in addition, no disjunction of any proper subset of the literals
comprising s is a clause. A (prime) clause or implicant is monotone if it has no

568

negated variables. In the case of monotone (prime) implicants and clauses, we
will often regard them as sets of variables.

A Boolean formula f (x l , . . . , Xn) determines the unique Boolean function
f : {0, 1} n --* {0, 1} in a natural way. For a Boolean function f denote by
P I (f) and PC(f) , respectively, the set of prime implicants and the set of prime
clauses. Likewise, the sets of all implicants and clauses of f are denoted by I (f)
and C(f) . By a (f) and fl(f) are meant the sizes of a smallest prime clause and
prime implicant o f f , i.e., ~(f) = min{[s[] s E PC(f) } and fl(f) = min{[p[I p E
PI(f) } .

The set of variables that occur in a formula f is denoted by V(f) , and
a mapping p : V(f) --+ {0, 1, .} is referred to as a restriction. The function
represented by the formula obtained by substituting p(x) for each x in f for
which p(x) • * is denoted tiP. More generally, for a set F of formulas we write
F]p = {tip I f e F}.

3 The Sipser function Sd
Defini t ion 3.1 The Sipser function Sd is defined for odd d = 1, 3 , . . . such that
i f n = 2 a then Sa : {0, 1} n ---* {0, 1} as follows. Given the set {xil, xi2, . . . , xi,,)
of n (distinct) variables, we form the complete binary tree of depth d with the
root labelled V and each level thereafter labelled with alternating A and V nodes.
I f the leaves of the tree are now labelled with the variables xi~, x i2 , . . . , xi , , the
tree represents the Boolean formula Sa(xi~, x i : , . . . , xi,), which in turn defines
the Sipser function Sa.

In this section we study the Sipser function in more detail. Clearly Sa is a
monotone function, hence prime implicants and clauses are made out of positive
variables only. Moreover, every prime implicant and clause intersect in exactly
one variable. (This is true in general for a monotone function iff it has a formula
with no repeated variable [8].)

The number of all prime implicants IPI(Sd)I and clauses [PC(Sa)I of Sd is
abbreviated, respectively, to A(Sd) and F(S~), as well as A d and Fd. Lengths
of prime implicants (clauses) of Sa are identical, and the length is denoted,
respectively, by ~r(Su) and ~r(Sd), or ~rd and ~ra for short. It is easy to see that
A(Sd) = 2 2('+1)/~-t, r (sd) = 2 2(2('-1)/~-1), ~r(Sd) = 2 (d-1)/2, and ~r(Sd) --
2(a+I)/L

Lerama 3.2 For z ~ V(Sd) denote by Aa(z) and Fa(x) the number of prime
implicants and prime clauses of Sa containing variable x. Then Ad(x) = Aa/trd
and rd(X) = rd/Trd.

Proof : See [6]. �9

L e m m a 3.3 (W i n d o w L e m m a) Let Sa be the Sipser function given by the
formula Sd(x i l , . . . , x i~) and X = { x i l , . . . , x i .) . I f Y is a non-empty subset of
X and Aa(Y) = {s E PC(Sa) I Y C_ s}, then IAa(Y)l < ra/21vl-2.

569

Proof i See [6]. �9

Let {Lr(Sa)}~=I,2 denote a sequence of subfunctions of Sd, called layers,
which are defined as follows. Each layer will have the form L~(Sa) = T~ h
T~ A- . . A T~, where T~, T r , . . . , T~ are subfunctions of Sa called triangles, each
triangle being itself a Sipser function. Informally, the sequence is constructed
iteratively so that next layer is obtained in the following way. First, we fix one
variable from every triangle of the current layer. Let us call the fixed variables
pivots. Secondly, we build a suitable restriction dependent on the choice of pivot
variables. Finally, the next layer is defined to be the previous layer under the
restriction.

Formally, to start with we think of Sa as a triangle in itself. Now, fixing a
pivot x 6 V(Sd), the layer LI(Sd) is formed as follows. Take any s 6 PC(Sd)
with s = x V t and define the restriction p~ on V(Sa) by

0, i f y E t
P~:(Y)= * , i f y ~ t "

Then we define LI(Sd) -" SdIp=. Observe that we can write LI(Sd) = To 1 AT~ A
T~ A...ATrXl, where To 1 , TI, T~ , . . . , T~I are the triangles of depth 0, 1, 3 , . . . , d - 2
respectively.

The next layer L2(Sd) is dependent on the choice of pivot variables z~ E
V(T~I), (i = 0, 1 , . . . , r l) . Given such a choice, we define L2(Sd) = LI(To 1) A
LI(T~) A LI(T21) A . . . A LI(T~I). Put another way, we have L2(Sd) = To 2 A T~ A
�9 .. A T~, where To 2, T ~ , . . . , T~ are all the triangles from L1 (To 1) , . . . , L1 (T~I).

In general, each time choosing one pivot from every triangle of the current
layer we proceed in the same way to get the next layer. Namely, for r -- 1, 2 , . . . ,
L~(Sd) = T~ A T~ A T~ A . . . A T~, and the choice of pivot variables x~ G V(T[),
(i -- O, 1 , . . . , Vr), we define Lr+l(Sd) = LI(T~)ALI(T~)ALI(T~)A.. "ALI(Trr),
or equivalently Lr+l (Sd) = T~0 +IAT~I +l A...ATrr+l~, where T~0 +1 , T~I +1 , . . . , Trr+l
are all the triangles from LI (T~) , . . . , LI(T~).

There are three aspects of the layer Lr (Sd) which are of special interest to
us: the number of prime implicants, the number of depth-non-zero triangles,
and the product of the lengths of prime clauses of all triangles of the layer.
They are denoted, respectively, tr(d), rr(d),)~r(d). Since their exact values are
rather cumbersome, we compute only tight bounds for them which suffice for
our purposes.

Theor e m 3.4 For every r = 1,2 , if d = 1 , 3 , . . . , 2 r - 1 then lr(d) =
1, = O, r(d) = 1 ; and if d >_ + 1 then

2 2 2 - I 2 2 2 - I

2 _< r(d) -< '

1

< " r-7. '

570

I' ~ ' ~ rJl-1 1 / d " ~ r + l 1
2,10, < a (d) <

P r o o f : See [6]. �9

4 T h e s w i t c h i n g l e m m a f o r Sd
It is well known that even a monotone Boolean function can have exponentially
many prime implicants while only polynomially many prime clauses (or vice
versa). In this section we deal with a similar problem of switching between
prime implicants and clauses for the Sipser function Sd. More precisely, let
F be a nonempty subset of the set of prime implicants of Sd and for n = 2 d
let f : {0, 1}" --+ {0, 1} be the function defined by f (x l , . . . , x ,) = Vp~FP.
The question is: what is a lower bound on the size of PC(I)? We show that,
roughly, if IFI is big enough, then IPC(f)l is also big. (Our argument can be
easily modified for the corresponding dual case.) The proof's outline in major
steps is as follows.

�9 first important observation is the relationship between IPC(f)I and a(f),
namely IPC(f)] >_ 2~(J)-2;

since a (f) can be small, we show that if IF[is big enough, then there is
a restriction p such that Sdlp = Sd,,f[p ---- ff where ff -" VqEF' q for some
F ~ C_ PI(Sd,), and a (f ') is amplified;

�9 using these and showing IPC(f)I ~ IPC(f ') l we get IPC(f)l is big if IFI
is.

L e m m a 4.1 Let Sd be the Sipser function and F C_ PI(Sd) be nonempr If
I = Vp~Fp, then IPC(I)I > 2"U)-~.

P r o o f : For each t E PC(f) thought of as the set of variables, we let Ad(t) =
{s E PC(Sd)] t C_ s}. (Note that PC(f) r O since f is a non-constant function,
hence it makes sense to talk about Ad(@) We claim that

PC(Sd)= U Ad(t). (1)
tePc(l)

The inclusion __D is trivial, and to see the other part take s E PC(Sd). Then s is
a clause for f and so there is a t E PC(f) such that ~ C s, i.e., s E Ad(t).

Now, by Lemma 3.3 and definition of a (f) we have IAd(t)l <_ rd/21tl-2 <_
rd/2~(s) -2 for every t E PC(f) , i.e.,

max{lAa(t)l l t ~ PC(f)} < rd _ 2.(j)_ 2 . (2)

571

Combining (1) and (2), one obtains

rd = IPC(Sa)l < ~ IAd(t)l < IPC(f)l'max{IAd(t)l I t �9 PC(Z)}
t ePC(,r

rd
<_ IPC(f)l . 2.(s)_2 �9

Therefore, IPC(f)I >_ 2 "(J)-~ as desired. �9

L e m m a 4.2 Let Sd be the Sipser function and F C PI(Sd) be nonempty. For
each x �9 V(Sd) define the set F(x) = {p �9 F I x �9 p}. Then there is an

�9 V(Sd) such that IF(~)I _> IFI/od.

Proof : See [6]. �9

L e m m a 4.3 (A m p l i f i c a t i o n L e m m a) Let Sd be the Sipser function and F C
PI(Sd) be nonempty. For n = 2 d define f : {0,1} n --~ {0,1} by f (x l , . . . , x n) =
VpeF P" I f IFI >_ s and d > 2 5(r+1) for some r > 1, then there is a restriction
p on V(Sd) such that

a) Sdlp = Sd, with d' = ~2(d),

b) F]p = F' where F' C_ PI(Sd,), and

e) if f f = Zip = V q' then c~(f') = 2 fKd) and fl(f ') = 2 fffd).
qEF ~

R e m a r k : The constants hidden in the f~-notation depend on r.

P roo f : Fix d and suppose F C PI(Sd) is nonempty. For the sake of simplicity,
in what follows we will usually omit notation for the depth d as a variable in
quantities that depend upon it. Also, we put ~0 = ~0(d) -- trd.

Now take r > 1 for which IFI > fr and d > 2 5(r+1). We first construct a
layer Lr, restriction 7/, and set Fr C F f3 PI(Lr) such that Fr = F ly and

IF1 IF, I >
~0"~1""~,-1

To this end, for each x e V(Sd) define the set F(x) = {p e F I x C p} and
by Lemma 4.2 choose the pivot x01 for L1 such that IF(x~)[> IFI/~d = IFI/~o.
Building the layer L1 in this way (i.e., using restriction ~/1 = P=~o)' if F~ = F(x~0)

we get F1 C.C_ F f3 PI(L1), F1 = F]711, and IFll > IFI/)to.
In order to obtain the layer L2 let us introduce the following notation. For

every variable yi e V(T1), where T 1, (i = 0, 1 , . . . , rl), are the triangles of the
layer L1, let

F~(y0) = {p e F1 I y0 e p},
r~(y0, y~) = {p e Fl(y0) I Y~ e p},

FI(yo, y l , . . . ,YT,) = {pC r l (yo ,y l , . . . ,Yr , -1) [Yr, e p}.

572

The pivots x~, (i = 0, 1 , . . . , vl), for L~ are now chosen as x0 ~ = x01 (i.e., Fi(x~) =
F1), and the others by repeated application of Lemma 4.2 such that for every
i = 1, . . . , rl we have [Fz(x~, x~, . . . , x~) I k]F~(x~o, x~, . . . , x~_l)[/o'~, where tr I =
a(T)) . It follows that

�9 , ~)] _ > IFxl = I& l > IF__JL
~ . C r ~ . . . ~ , ~l ~o" ~ "

Thus, if r/2 is the restriction yielding the layer Lg. and F2 = F~(z2o, z~ , . . . , x~i),
then F~ C_ F D PI(L~), F2 = &l~2, and levi > IFI/(~0 �9 ~,)-

The reader should have no difficulty to see that, proceeding in this way
for subsequent layers, we will eventually get the layer Lt with corresponding

r r . . . ;g r restriction ~k and the set Ft = Ft-l(Xo,X 1, , ~_~) such that Ft C F r'l
PI(Lt) , Ft = Ft-1]~k, and]Ft] > IF]/()to.) t l - . .~t t_l) . Therefore, for 7/ =
7/1 o ~/2 o . . . o 7/t we have F ly = Fr, and so our first goal is achieved.

Next, define the restrictions ~/, (i = 0, 1 , . . . , rt), on V(Lr) by

, , i f y E V(T[)
~i(Y)= 1 , i f y e V (T i t) '

and let P;, (i = 0 , 1 , . . . , Tt), be the sets given by Pi = Ft [~i- If we define
t T r A, = A (T D , ~, - IP, I / (A U ~) , and # = Hi=opi, then

At At lr
T r �9 IFtl ___ IP0[. IPll . - -[PT.I = , 0 A-~ �9 #x "" " 'T , crt = ~ $

(70 1 T,.

On the other hand IFq _> IFW(~o" ~ '" ";~t-~) > tU(~o" ~ " "~t-~), and so
1-[~=o ~ . Since #~ = l'-[i=o/~, i t follows that there is a k E {0, 1 , . . . , r t }

such that

~k > FI (3)

Using the assumption d > 2 s(t+l) and Theorem 3.4, it requires straightforward
algebra to check that the right-hand side of (3) is at least 2a/2~('+1) , which implies
/~k ---- 2 i 2 (d) .

Clearly, if we take F' = PI,, p = rl o {k, and Sd, = T[where d' is the depth of
T[, then F ' = FIp and F' C PI(Sa,). Moreover, it is easy to see that Sdlp = Sa,
and l ip = VqEF, q" Thus, if f ' = flP it remains to prove a(f f) and d' are as
claimed.

For that, for each x E V(Sd,) define the set F'(x) = {q e F' I x e q}.
Since one variable x E V(Sa,) occurs by Lemma 3.2 in at most Ad,/O'd, prime
implicants of Sa,, we have IF'(x)] < Ad,/~rd,. Now, take any s E PC(i f) and
observe F ' = U~e~ F'(x), hence IF'I < E : e , IF'(~)I < h i -Aa , /~a , , i.e.,

I F ' I IP~I
I~1 > A a , l< ,a , - A t I< , t = ~ �9

~ k l k

573

Because s E P C (f) is arbitrary, this implies a (f) > #~ = 2 n(d). Finally,
d' = t2(d) easily follows from 2n(d) = ~ (f ') < 2 d' , and/~(f ') = 2(d'-x)/2 = 2 n(d).

L e m m a 4.4 Let f : {0, 1}'* ~ {0, 1} be a monotone Boolean function repre-
sented by a formula If p is any restriction on then
IPC(f)I > IPC(fIp)I.
P r o o f : Straightforward. �9

L e m m a 4.5 (S w i t c h i n g L e m m a) Let Sd be the Sipser function, and let F C
PI(Sd) be nonemply. For n -- 2 d define f : {0, 1} n ---+ {0, 1} by f - VveFP. I f

IF[> i t (d) and d > 25(r+l) for some r >_ 1, then [PC(f)l - 2 u " (') .

R e m a r k : The constant hidden in the ~-notation depends on r.

P r o o f : Let p be the restriction from Amplification Lemma such that f =
f lP = VqeF, q for F' (7_ PI(Sd,) and c~(f') = 2a(d). Then

[PC(f)l >_]PC(f')l , by Lemma4.4

> 2 a(/ ') -2 , by Lemma 4.1

= 22a(~) . �9

5 On depth-3 circuits computing Sd
In this section we use the previous results to easily obtain a lower bound on
the size of depth-3 monotone circuits computing Sd. To this end we consider
only 2II~-circui ts since similar dual argument handles the case of II2II-circuits.
Through the rest of the section we let n = 2 d.

T h e o r e m 5.1 Any monotone ~II~-circuit computing Slogn has super quasi-
polynomial size.

P r o o f : Let C be a monotone ~H~-circui t on n variables that computes Slogn
and has size 21~ kn, for some constant k. Then there is one AND gate on the
middle level computing function, say, h with the following properties: PI(h) =
FOG, where F (7. PI(Slogn) and IF I > Alogn/2 l~ = 2 e(~-)-l~ n; moreover,
every q E G has the form q = q'q" with q~ ~_ PI(S log ,) \F and q" a non-empty
product of variables. Thus, we can apply the Switching Lemma to f = VpeF P
and conclude that there exists e > 0 such that PC(h) > 2 n.. Now, it is not hard
to see that [PC(h)l >_]PC(f)] and so PC(h) > 2 "~. But then the monotone
subcircuit rooted at the AND gate which computes the function h must have
exponential size, a contradiction. �9

At the end we note that we can prove a slightly stronger result. Namely, a
non-monotone quasipolynomial size circuit computing the Sipser function still
has a gate on the next-to-top level which computes a function with exponentially
many monotone prime clauses. The details are omitted and can be found in [6].

574

A c k n o w l e d g m e n t s

We would like to thank Michael Sipser for insightful comments and discussions,
and especially for pointing out an error in an earlier version of this paper. We
also thank David Barrington for helpful suggestions about the results of our
work.

R e f e r e n c e s

[1] E. Allender, "A note on the power of threshold circuits", Proceedings of the
30th IEEE Symposium on Foundations of Computer Science, pp. 580-584,
1989.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

D. A. Barrington, "Bounded-width polynomial-size branching programs
recognize exactly those languages in NC i ' , Journal of Computer and Sys-
tem Sciences, Vol. 38, pp. 150-164, 1989.

R. Beigel and J. Tarui, "On ACC", Proceedings of the 32nd IEEE Sympo-
sium on Foundations of Computer Science, pp. 783-792, 1991.

R. B. Boppana and M. Sipser, "The Complexity of Finite Functions",
Handbook of Theoretical Computer Science, Vol. A (J. van Leeuwen, ed.,
North-Holland, Amsterdam), pp. 757-804, 1990.

J. Hastad, "Almost optimal lower bounds for small-depth circuits", Pro-
ceedings of the 18th A CM Symposium on Theory of Computing, pp. 6-20,
1986.

S. Istrail and D. Zivkovic, "A non-probabilistic switching lemma for the
Sipser function", Wesleyan University, CS/TR-92-1, 1992.

M. Karchmer and A. Wigderson, "Monotone circuits for connectivity re-
quire super-logarithmic depth", Proceedings of the 20th A CM Symposium
on Theory of Computing, pp. 539-550, 1988.

D. Mundici, "Functions computed by monotone Boolean formulas with no
repeated variables", Theoretical Computer Science, Vol. 66, pp. 113-114,
1989.

A. A. Razborov, "Lower bounds on the monotone complexity of some
Boolean functions", DokIady Akademii Nauk SSSR, Vol. 281(4), pp. 798-
801, 1985 (in Russian). English translation in Soviet Mathematics Doklady,
Vol. 31, pp. 354-357, 1985.

A. A. Razborov, "Lower bounds on the size of bounded depth networks over
a complete basis with logical addition", Matematicheskie Zametki, Vol.
41(4), pp. 598-607, 1987 (in Russian). English translation in Mathematical
Notes of the Academy of Sciences of the USSR, Vol. 41(4), pp. 333-338,
1987.

575

[11] S. Skyum and L. G. Valiant, "A complexity theory based on Boolean al-
gebra", Journal of the ACM, Vol. 22, pp. 484-504, 1985.

[12] L. G. Valiant, "Exponential lower bounds for restricted monotone circuits",
Proceedings of the 15th ACM Symposium on Theory of Computing, pp.
110-117, 1983.

[13] I. Wegener, The Complexity of Boolean Functions, Wiley-Teubner, 1987.

