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Abs t r ac t .  Valiant [12] showed that the clique function is structurally dif- 
ferent than the majority function by establishing the following "switching 
lemma ~ : Any function f whose set of prime implicants is a large enough 
subset of the set of cliques (and thus requiring big ~2-circuits), has a 
large set of prime clauses (i.e., big II2-circuits). As a corollary, an expo- 
nential lower bound was obtained for monotone ~II~-circuits computing 
the clique function. The proof technique is the only non-probabilistic su- 
per polynomial lower bound method from the literature. We prove, by 
a non-probabflistic argument as well, a similar switching lemma for the 
NCl-complete Sipser function. Using this we then show that a monotone 
depth-3 (i.e., ~II~ or II~II) circuit computing the Sipser function must 
have super quasipolynomial size. Moreover, any depth-d quasipolynomial 
size non-monotone circuit computing the Sipser function has a depth- 
(d - 1) gate computing a function with exponentially many both prime 
implicants and (monotone) prime clauses. These results are obtained by 
a top-down analysis of the circuits. 

1 I n t r o d u c t i o n  

Proving lower bounds on the size or depth of Boolean circuits is a fundamental  
problem in complexity theory. It is quite remarkable that  almost all methods 
used in deriving super polynomial lower bounds employ-- in  crucial parts of 
the argument--probabil is t ic  reasoning. To appreciate the difficulty of obtaining 
non-probabilistic lower bound proofs, let us mention that  there is only one such 
method in the li terature due to Valiant [12]. It is used to show that  any monotone 
~II~-circuit  computing the clique function requires exponential size. 

Let us call clique-like a function whose prime implicants form a large enough 
subset of the set of cliques. Certainly such a function requires a big ~2-circuit. 
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The Valiant's result shows that any II2-circuit for the function is also big. This 
evidence was presented as a structural difference between the clique function 
and the majority function. Indeed, majority-like functions may have small II2- 
circuits. 

In this paper we present results similar to those of Valiant's. They are 
stronger in the sense that they apply to a much easier function. Instead of the 
NP-complete clique function we show analogous results for the NCl-complete 
Sipser function Slogn, i.e., the alternating OR-AND complete binary tree of 
depth log n. This means that the above type of structural difference, now be- 
tween Slogn and majority, is present in NC 1 and therefore is not necessarily 
related to the fact that the clique function belongs to a higher complexity class. 

Let us call Sipser-like a function whose set of prime implicants is a subset of 

at least 2 ~176176176 prime implicants of Slogs. We establish 

1. A structural characterization of the self-reducibility of Slog~ ; 

2. Switching Lemma: Any Sipser-like function has an exponential size set of 
prime clauses. 

3. Any Sipser-like function requires super quasipolynomial size monotone 
depth-3 circuits; 

. Every non-monotone depth-d circuit computing a Sipser-like function has 
a depth-(d- 1) gate computing a function whose both the number of prime 
implicants and the number of (monotone) prime clauses is exponential. 

Our results are obtained through an extensive combinatorial analysis of the 
self-reducibility of the Sipser function. This is of an independent interest and, 
together with the NCl-completeness, may speak in favor of the use of Slogn as 
a target function in other lower bound proofs (e.g., attacking the separation of 
TC ~ and ACC from NC1). 

The paper is organized as follows. After recalling basic definitions and nota- 
tion we study the Sipser function in more detail. Section 4 contains our switching 
lemma, and section 5 its application to lower bounds on the size of circuits. 

2 Bas i c  def in i t ions  and  n o t a t i o n  

This section contains definitions and notation adopted throughout the paper. 
We first recall some of the basic notions of the theory of Boolean functions (for 
more details see, for example, [13]). A literal is a variable or a negated variable. 
A conjunction of literals, p, is an implicant of a Boolean function f if p < f 
pointwise. If in addition, no conjunction of any proper subset of the literals 
comprising p is an implicant, then p is a prime implicant of f .  By the same 
token, a disjunction of literals, s, such that f < s is a clause of f .  It is a 
prime clause if, in addition, no disjunction of any proper subset of the literals 
comprising s is a clause. A (prime) clause or implicant is monotone if it has no 
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negated variables. In the case of monotone (prime) implicants and clauses, we 
will often regard them as sets of variables. 

A Boolean formula f ( x l , . . . ,  Xn) determines the unique Boolean function 
f : {0, 1} n --* {0, 1} in a natural way. For a Boolean function f denote by 
P I ( f )  and PC(f ) ,  respectively, the set of prime implicants and the set of prime 
clauses. Likewise, the sets of all implicants and clauses of f are denoted by I ( f )  
and C(f) .  By a ( f )  and fl(f) are meant the sizes of a smallest prime clause and 
prime implicant o f f ,  i.e., ~(f)  = min{[s[ ] s E PC( f ) }  and fl(f) = min{[p[ I p E 
PI( f ) } .  

The set of variables that occur in a formula f is denoted by V(f) ,  and 
a mapping p : V(f )  --+ {0, 1, .} is referred to as a restriction. The function 
represented by the formula obtained by substituting p(x) for each x in f for 
which p(x) • * is denoted tiP. More generally, for a set F of formulas we write 
F]p = {tip I f e F}. 

3 The Sipser function Sd 
Defini t ion  3.1 The Sipser function Sd is defined for odd d = 1, 3 , . . .  such that 
i f n  = 2 a then Sa : {0, 1} n ---* {0, 1} as follows. Given the set {xil, xi2, . . . ,  xi,,) 
of n (distinct) variables, we form the complete binary tree of depth d with the 
root labelled V and each level thereafter labelled with alternating A and V nodes. 
I f  the leaves of the tree are now labelled with the variables xi~, x i2 , . . . ,  xi , ,  the 
tree represents the Boolean formula Sa(xi~, x i : , . . . ,  xi,),  which in turn defines 
the Sipser function Sa. 

In this section we study the Sipser function in more detail. Clearly Sa is a 
monotone function, hence prime implicants and clauses are made out of positive 
variables only. Moreover, every prime implicant and clause intersect in exactly 
one variable. (This is true in general for a monotone function iff it has a formula 
with no repeated variable [8].) 

The number of all prime implicants IPI(Sd)I and clauses [PC(Sa)I of Sd is 
abbreviated, respectively, to A(Sd) and F(S~), as well as A d and Fd. Lengths 
of prime implicants (clauses) of Sa are identical, and the length is denoted, 
respectively, by ~r(Su) and ~r(Sd), or ~rd and ~ra for short. It is easy to see that 
A(Sd) = 2 2('+1)/~-t, r (sd)  = 2 2(2('-1)/~-1), ~r(Sd) = 2 (d-1)/2, and ~r(Sd) -- 
2(a+I)/L 

Lerama  3.2 For z ~ V(Sd) denote by Aa(z) and Fa(x) the number of prime 
implicants and prime clauses of Sa containing variable x. Then Ad(x) = Aa/trd 
and rd(X) = rd/Trd. 

Proof :  See [6]. �9 

L e m m a  3.3 ( W i n d o w  L e m m a )  Let Sa be the Sipser function given by the 
formula Sd(x i l , . . . , x i~)  and X = { x i l , . . . , x i . ) .  I f Y  is a non-empty subset of 
X and Aa(Y) = {s E PC(Sa) I Y C_ s}, then IAa(Y)l < ra/21vl-2. 
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Proof i  See [6]. �9 

Let {Lr(Sa)}~=I,2 .... denote a sequence of subfunctions of Sd, called layers, 
which are defined as follows. Each layer will have the form L~(Sa) = T~ h 
T~ A- . .  A T~,  where T~, T r , . . .  , T~ are subfunctions of Sa called triangles, each 
triangle being itself a Sipser function. Informally, the sequence is constructed 
iteratively so that  next layer is obtained in the following way. First, we fix one 
variable from every triangle of the current layer. Let us call the fixed variables 
pivots. Secondly, we build a suitable restriction dependent on the choice of pivot 
variables. Finally, the next layer is defined to be the previous layer under the 
restriction. 

Formally, to start with we think of Sa as a triangle in itself. Now, fixing a 
pivot x 6 V(Sd), the layer LI(Sd) is formed as follows. Take any s 6 PC(Sd) 
with s = x V t and define the restriction p~ on V(Sa) by 

0,  i f y E t  
P~:(Y)= * ,  i f y ~ t  " 

Then we define LI(Sd) -" SdIp=. Observe that  we can write LI(Sd) = To 1 AT~ A 
T~ A...ATrXl, where To 1 , TI,  T~ , . . . ,  T~I are the triangles of depth 0, 1, 3 , . . . ,  d -  2 
respectively. 

The next layer L2(Sd) is dependent on the choice of pivot variables z~ E 
V(T~I), (i = 0, 1 , . . . , r l ) .  Given such a choice, we define L2(Sd) = LI(To 1) A 
LI(T~) A LI(T21) A . . .  A LI(T~I). Put another way, we have L2(Sd) = To 2 A T~ A 
�9 .. A T~,  where To 2, T ~ , . . . ,  T~ are all the triangles from L1 (To 1 ) , . . . ,  L1 (T~I). 

In general, each time choosing one pivot from every triangle of the current 
layer we proceed in the same way to get the next layer. Namely, for r -- 1, 2 , . . . ,  
L~(Sd) = T~ A T~ A T~ A . . . A T~, and the choice of pivot variables x~ G V(T[), 
(i -- O, 1 , . . . ,  Vr), we define Lr+l(Sd) = LI(T~)ALI(T~)ALI(T~)A..  "ALI(Trr ), 
or equivalently Lr+l (Sd) = T~0 +IAT~I +l A...ATrr+l~, where T~0 +1 , T~I +1 , . . . ,  Trr+l 
are all the triangles from LI (T~) , . . . ,  LI(T~). 

There are three aspects of the layer Lr (Sd) which are of special interest to 
us: the number of prime implicants, the number of depth-non-zero triangles, 
and the product of the lengths of prime clauses of all triangles of the layer. 
They are denoted, respectively, tr(d), rr(d), )~r(d). Since their exact values are 
rather cumbersome, we compute only tight bounds for them which suffice for 
our purposes. 

Theor e m 3.4 For every r = 1,2 . . . .  , if d = 1 , 3 , . . . , 2 r  - 1 then lr(d) = 
1, = O,  r(d) = 1 ; and if  d >_ + 1 then 

2 2  2 - I  2 2  2 - I  

2 _<  r(d) -< ' 

1 

< " r-7. ' 
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I' ~ ' ~  rJl-1 1 / d " ~ r + l  1 
2,10, < a (d) < 

P r o o f :  See [6]. �9 

4 T h e  s w i t c h i n g  l e m m a  f o r  Sd 
It is well known that even a monotone Boolean function can have exponentially 
many prime implicants while only polynomially many prime clauses (or vice 
versa). In this section we deal with a similar problem of switching between 
prime implicants and clauses for the Sipser function Sd. More precisely, let 
F be a nonempty subset of the set of prime implicants of Sd and for n = 2 d 
let f : {0, 1}" --+ {0, 1} be the function defined by f ( x l , . . . , x , )  = Vp~FP. 
The question is: what is a lower bound on the size of PC(I)? We show that, 
roughly, if IFI is big enough, then IPC(f)l is also big. (Our argument can be 
easily modified for the corresponding dual case.) The proof's outline in major 
steps is as follows. 

�9 first important  observation is the relationship between IPC(f)I and a(f), 
namely IPC(f)] >_ 2~(J)-2; 

since a ( f )  can be small, we show that if IF[ is big enough, then there is 
a restriction p such that Sdlp = Sd,,f[p ---- ff where ff -" VqEF'  q for some 
F ~ C_ PI(Sd,), and a ( f ' )  is amplified; 

�9 using these and showing IPC(f)I ~ IPC(f ' ) l  we get IPC(f)l is big if IFI 
is. 

L e m m a  4.1 Let Sd be the Sipser function and F C_ PI(Sd) be nonempr If 
I = Vp~Fp, then IPC(I)I > 2"U)-~. 

P r o o f :  For each t E PC(f)  thought of as the set of variables, we let Ad(t) = 
{s E PC(Sd) ] t C_ s}. (Note that PC(f)  r O since f is a non-constant function, 
hence it makes sense to talk about Ad(@) We claim that 

PC(Sd)= U Ad(t). (1) 
tePc(l) 

The inclusion __D is trivial, and to see the other part take s E PC(Sd). Then s is 
a clause for f and so there is a t E PC(f)  such that ~ C s, i.e., s E Ad(t). 

Now, by Lemma 3.3 and definition of a ( f )  we have IAd(t)l <_ rd/21tl-2 <_ 
rd/2~(s) -2 for every t E PC(f) ,  i.e., 

max{lAa(t)l l t ~ PC(f)}  < rd _ 2.(j)_ 2 . (2) 



571 

Combining (1) and (2), one obtains 

rd = IPC(Sa)l < ~ IAd(t)l < IPC(f)l'max{IAd(t)l I t �9 PC(Z)} 
t ePC( ,r  

rd 
<_ IPC(f)l .  2.(s)_2 �9 

Therefore, IPC(f)I >_ 2 "(J)-~ as desired. �9 

L e m m a  4.2 Let Sd be the Sipser function and F C PI(Sd) be nonempty. For 
each x �9 V(Sd) define the set F(x) = {p �9 F I x �9 p}. Then there is an 

�9 V(Sd) such that IF(~)I _> IFI/od. 

Proof :  See [6]. �9 

L e m m a  4.3 ( A m p l i f i c a t i o n  L e m m a )  Let Sd be the Sipser function and F C 
PI(Sd) be nonempty. For n = 2 d define f :  {0,1} n --~ {0,1} by f ( x l , . . . , x n )  = 
VpeF P" I f  IFI >_ s and d > 2 5(r+1) for some r > 1, then there is a restriction 
p on V(Sd) such that 

a) Sdlp = Sd, with d' = ~2(d), 

b)  F]p = F' where F' C_ PI(Sd,),  and 

e) if f f  = Zip = V q' then c~(f') = 2 fKd) and fl(f ') = 2 fffd). 
qEF ~ 

R e m a r k :  The constants hidden in the f~-notation depend on r. 

P roo f :  Fix d and suppose F C PI(Sd) is nonempty. For the sake of simplicity, 
in what follows we will usually omit notation for the depth d as a variable in 
quantities that  depend upon it. Also, we put ~0 = ~0(d) -- trd. 

Now take r > 1 for which IFI > fr and d > 2 5(r+1). We first construct a 
layer Lr, restriction 7/, and set Fr C F f3 PI(Lr)  such that  Fr = F ly  and 

IF1 IF, I > 
~0"~1""~,-1 

To this end, for each x e V(Sd) define the set F(x)  = {p e F I x C p} and 
by Lemma 4.2 choose the pivot x01 for L1 such that  IF(x~)[ > IFI/~d = IFI/~o. 
Building the layer L1 in this way (i.e., using restriction ~/1 = P=~o)' if F~ = F(x~0) 

we get F1 C.C_ F f3 PI(L1), F1 = F]711, and IFll > IFI/)to. 
In order to obtain the layer L2 let us introduce the following notation. For 

every variable yi e V(T1), where T 1, (i = 0, 1 , . . . ,  rl), are the triangles of the 
layer L1, let 

F~(y0) = {p e F1 I y0 e p}, 
r~(y0, y~) = {p e Fl(y0) I Y~ e p}, 

FI(yo, y l , . . . ,YT,)  = {pC r l ( yo ,y l , . . . ,Yr , -1 )  [ Yr, e p}. 
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The pivots x~, (i = 0, 1 , . . . ,  vl), for L~ are now chosen as x0 ~ = x01 (i.e., Fi(x~) = 
F1), and the others by repeated application of Lemma 4.2 such that  for every 
i = 1, . . . ,  rl we have [Fz(x~, x~, . . . ,  x~) I k ]F~(x~o, x~, . . . ,  x~_l)[/o'~, where tr I = 
a(T)) .  It follows that  

�9 , ~ ) ] _ >  IFxl = I& l  > IF__JL 
~ .  C r ~ . . . ~ ,  ~l  ~o" ~ " 

Thus, if r/2 is the restriction yielding the layer Lg. and F2 = F~(z2o, z~ , . . . ,  x~i), 
then F~ C_ F D PI(L~), F2 = &l~2, and levi > IFI/(~0 �9 ~,)- 

The reader should have no difficulty to see that,  proceeding in this way 
for subsequent layers, we will eventually get the layer Lt with corresponding 

r r . . .  ;g r  restriction ~k and the set Ft = Ft-l(Xo,X 1, , ~_~) such that  Ft C F r'l 
PI(Lt ) ,  Ft = Ft-1]~k, and ]Ft] > IF]/()to. ) t l - . .~t t_l) .  Therefore, for 7/ = 
7/1 o ~/2 o . . .  o 7/t we have F ly  = Fr, and so our first goal is achieved. 

Next, define the restrictions ~/, (i = 0, 1 , . . . ,  rt), on V(Lr) by 

, ,  i f y  E V(T[) 
~i(Y)= 1 ,  i f y e V ( T i  t) ' 

and let P;, (i = 0 , 1 , . . . ,  Tt), be the sets given by Pi = Ft [~i- If we define 
t T r  A,  = A ( T D ,  ~, - IP, I / ( A U ~ ) ,  and # = Hi=opi, then 

At At  lr  
T r  �9 IFtl ___ IP0[. IPll . - -[PT.I  = , 0  A-~ �9 #x "" " 'T ,  crt = ~ $ 

(70 1 T,. 

On the other hand IFq _> IFW(~o" ~ '"  ";~t-~) > tU(~o" ~ "  "~t-~), and so 
1-[~=o ~ .  Since #~ = l'-[i=o/~, i t  follows that there is a k E {0, 1 , . . . ,  r t }  

such that  

~k > FI (3) 

Using the assumption d > 2 s(t+l) and Theorem 3.4, it requires straightforward 
algebra to check that  the right-hand side of (3) is at least 2a/2~('+1) , which implies 
/~k ---- 2 i 2 (d ) .  

Clearly, if we take F' = PI,, p = rl o {k, and Sd, = T[ where d' is the depth of 
T[, then F '  = FIp and F' C PI(Sa,). Moreover, it is easy to see that  Sdlp = Sa, 
and l ip  = VqEF, q" Thus, if f '  = flP it remains to prove a(f f)  and d' are as 
claimed. 

For that,  for each x E V(Sd,) define the set F'(x) = {q e F'  I x e q}. 
Since one variable x E V(Sa,) occurs by Lemma 3.2 in at most Ad,/O'd, prime 
implicants of Sa,, we have IF'(x)] < Ad,/~rd,. Now, take any s E PC( i f )  and 
observe F '  = U~e~ F'(x),  hence IF'I < E : e ,  IF'(~)I < h i -Aa , /~a , ,  i.e., 

I F ' I  IP~I 
I~1 > A a ,  l< ,a ,  - A t  I< , t  = ~ �9 

~ k l  k 
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Because s E P C ( f )  is arbitrary, this implies a ( f )  > #~ = 2 n(d). Finally, 
d' = t2(d) easily follows from 2n(d) = ~ ( f ' )  < 2 d' , and/~(f ' )  = 2(d'-x)/2 = 2 n(d). 

L e m m a  4.4 Let f : {0, 1}'* ~ {0, 1} be a monotone Boolean function repre- 
sented by a formula If p is any restriction on then 
IPC(f)I > IPC(fIp)I. 
P r o o f :  Straightforward. �9 

L e m m a  4.5 ( S w i t c h i n g  L e m m a )  Let Sd be the Sipser function, and let F C 
PI(Sd) be nonemply. For n -- 2 d define f : {0, 1} n ---+ {0, 1} by f - VveFP. I f  

IF[ > i t (d)  and d > 25(r+l) for some r >_ 1, then [PC(f)l - 2 u " ( ' ) .  

R e m a r k :  The constant hidden in the ~-notation depends on r. 

P r o o f :  Let p be the restriction from Amplification Lemma such that  f = 
f lP = VqeF, q for F' (7_ PI(Sd,) and c~(f') = 2a(d). Then 

[PC(f)l >_ ]PC(f')l , by Lemma4.4  

> 2 a(/ ' ) -2 , by Lemma 4.1 

= 22a(~) . �9 

5 On depth-3 circuits computing Sd 
In this section we use the previous results to easily obtain a lower bound on 
the size of depth-3 monotone circuits computing Sd. To this end we consider 
only 2II~-circui ts  since similar dual argument handles the case of II2II-circuits. 
Through the rest of the section we let n = 2 d. 

T h e o r e m  5.1 Any monotone ~II~-circuit computing Slogn has super quasi- 
polynomial size. 

P r o o f :  Let C be a monotone ~H~-circui t  on n variables that  computes Slogn 
and has size 21~ kn, for some constant k. Then there is one AND gate on the 
middle level computing function, say, h with the following properties: PI(h) = 
FOG,  where F (7. PI(Slogn) and IF I > Alogn/2 l~ = 2 e(~-)-l~ n; moreover, 
every q E G has the form q = q'q" with q~ ~_ PI(S log , ) \F  and q" a non-empty 
product  of variables. Thus, we can apply the Switching Lemma to f = VpeF P 
and conclude that  there exists e > 0 such that  PC(h) > 2 n.. Now, it is not hard 
to see that  [PC(h)l >_ ]PC(f)] and so PC(h) > 2 "~. But then the monotone 
subcircuit rooted at the AND gate which computes the function h must have 
exponential size, a contradiction. �9 

At the end we note that  we can prove a slightly stronger result. Namely, a 
non-monotone quasipolynomial size circuit computing the Sipser function still 
has a gate on the next-to-top level which computes a function with exponentially 
many monotone prime clauses. The details are omitted and can be found in [6]. 
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